Площадь шара находится по формуле. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Площадь полусферы калькулятор онлайн. Сфера, шар, сегмент и сектор

Площадь шара находится по формуле. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Имея при себе всего одну формулу и зная изначально, чему равен диаметр или радиус, можно с лёгкостью вычислить площадь поверхности шара. Формула будет иметь вид S =4πR2, где число «пи» умножается на 4, затем на радиус шара в квадратной степени. Но перед непосредственными вычислениями следует сразу разобраться в терминах.

Это следует знать:

  • Шар – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
  • Сфера – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
  • Число «пи» — это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
  • Радиус шара равен ½ его диаметру. Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
  • Квадратная степень обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
  • Объём – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
  • Площадь – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

Занимательные факты

:

  1. У числа «пи» есть собственные фан-клубы по всему миру. Члены общества пытаются запомнить как можно больше знаков из этого числа, а также пытаются разгадать вселенские тайны, сокрытые в числе.
  2. Площадь суши Земли составляет всего 29,2 % от её общей поверхности. Точное число площади сложно назвать из-за неравномерного рельефа Земли, такие как впадины и горы.
  3. Знания о формуле площади шара можно применять и в быту. Также этими знаниями можно подавлять соперника в споре.

Продемонстрировав объём своих знаний в области геометрии, можно изначально заставить вас уважать, а ремонтникам и продавцам можно дать понять, что вас просто так не обмануть.

Применение формулы

Рассмотрим на примере, как вычислить площадь круглого шара, диаметр которого равен 50 см. Следуя формуле, нужно 50 разделить на два (чтобы получить радиус), возвести полученное число в квадрат и умножить всё это дело сначала на 4, затем на 3,14. В итоге получим число в 7 850 квадратных сантиметров.

Формула вычисления площади применяется не только среди учителей в школе и научных сотрудников в лаборатории. Данная формула может пригодиться обычному маляру. Ведь если шар большой, а краски мало, то возникает вопрос – хватит ли ему этой смеси, чтобы покрасить весь объект. И это далеко не единственный бытовой случай, где может пригодиться формула.

Формула вычисления объёма может пригодиться и строительной бригаде, что делает ремонт. И неважно, какой это объект – промышленное здание, небольшой дом или обычная квартира. Этим и отличаются профессионалы – они умеют применять свои знания на практике.

Но как быть, если не представляется возможным измерить объект? Такой вопрос может возникнуть в случае огромных размеров объекта или его недосягаемости.

В этом случае могут помочь электронные технологии, в основе работы которых лежит сканирование пространства определёнными частотами и лазерами. С современными технологиями необязательно знать все формулы наизусть.

Достаточно иметь подключение к интернету и зайти на любой онлайн-калькулятор.

Принято считать, что первый, кто нашёл и вывел формулу объёма и площади шара,был Архимед. Это величайший древнегреческий учёный, живший за 300 лет до нашей эры. Он был не только математиком, но и физиком, и инженером. Он один из первых людей, кто попытался «оцифровать» окружающий нас мир. Его теоремы и труды используются по сей день.

Именно Архимед определил границы числа «пи» и обозначил их, не имея никаких современных гаджетов. Сам Архимед очень гордился найденной формулой, с помощью которой вычисляется объём шара. Его потомки в честь этого изобразили на его могильном камне цилиндр и шар.

Если бы каким-то чудом он переродился в наше время, то он сразу же смог бы преобразить этот мир и вывести его на новый уровень.

На примере этого видео вам будет легко понять, как найти площадь поверхности шара.

Если известна длина радиуса (r), то площадь поверхности сферы (S) будет составлять учетверенное произведение возведенного в квадрат радиуса на число Пи (π): S=4∗π∗r². Например, при длине радиуса сферы в три метра его площадь составит 4∗3,14∗3²=113,04 квадратных метров.

Если известен (V) пространства, ограниченного сферой, то сначала можно найти ее диаметр (d), а затем воспользоваться формулой, приведенной в первом шаге.

Так как объем одной шестой части Пи на возведенную в куб длину диаметра сферы (V=π∗d³/6), то диаметр можно , как кубический корень из шести объемов, разделенных на число Пи: d=³√(6∗V/π). Подставив это значение в формулу из первого шага, получим: S=π∗(³√ (6∗V/π))².

Например, при ограниченного сферой пространства равном 500 кубометров вычисление ее площади будет выглядеть так: 3,14∗(³√(6∗500/3,14))² = 3,14∗(³√955,41)² = 3,14∗9,85² = 3,14∗97,02 = 304,64 квадратных метра.

Производить все эти расчеты в уме довольно затруднительно, поэтому придется воспользоваться каким либо из калькуляторов. Например, это может быть вычислитель, встроенный в поисковые системы Google или Nigma.

Google отличается в лучшую сторону тем, что умеет самостоятельно определять порядок операций, а Nigma потребует от вас тщательно все скобки. Для вычисления площади сферы по данным, например, из второго шага поисковый запрос, который надо ввести в Google, будет выглядеть так: «4*пи*32».

А для наиболее сложного случая с вычислением кубического корня и возведением в квадрат из третьего шага запрос будет таким: «пи*(6*500/пи)(2/3)».

Все планеты солнечной системы имеют форму шара. Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств.

Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара.

Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.

Инструкция

Если взять или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара, и ее окружность. От шара она отличается тем, что является полой. Ось как у шара, так и у сферы совпадает с диаметром и проходит через центр.

Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство и небесных тел.

В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения – круги разной площади.

Шар и сфера – взаимозаменяемые тела, в отличие от конуса, несмотря на то, что также является телом вращения.

Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она – по горизонтали или по вертикали.

Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара, и не считается взаимозаменяемым телом вращения.

Самый большой из возможных кругов получается при сечении шара , проходящей через центр О. Все круги, которые через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра.

Через две точки A и B, располагающиеся в любом месте поверхности шара, может проходить бесконечное количество кругов или окружностей.

Именно по этой причине через Земли может быть проведено неограниченное количество меридианов.

При нахождении площади шара рассматривается, прежде всего, площадь сферической поверхности.Площадь шара, а точнее, сферы, образующей его поверхность, может быть рассчитана на основании с тем же радиусом R.

Поскольку площадь круга есть произведение полуокружности на радиус, его можно рассчитать следующим образом:S = ?R2Так как через центр шара проходят четыре основных больших круга, то, соответственно площадьшара (сферы) равна:S = 4 ?R2

Данная может быть полезна в том случае, если известен либо диаметр, либо радиус шара или сферы. Однако, эти параметры приведены в качестве условий не во всех геометрических задачах. Существуют и такие задачи, в которых шар вписан в цилиндр.

В этом случае, следует воспользоваться теоремой Архимеда, суть которой заключается в том, что площадь поверхности шара в полтора раза меньше полной поверхности цилиндра:S = 2/3 S цил., где S цил. –площадь полной поверхности цилиндра.

по теме

Зная лишь длину диаметра окружности, можно вычислить не только площадь круга, но и площади некоторых других геометрических фигур. Это вытекает из того, что диаметры вписанных или описанных вокруг таких фигур окружностей совпадают с длинами их сторон либо диагоналей.

Инструкция

Если надо найти площадь (S) по известной длине его диаметра (D), умножайте число пи (π) на возведенную в длину диаметра, а результат делите на четыре: S=π ²*D²/4. Например,

Мы даем здесь очень простой, хотя и не совсем строгий вывод формулы для площади сферической поверхности; по своей идее он очень близок к методам интегрального исчисления. Итак, пусть дан некоторый шар радиуса R. Выделим на его поверхности какую-либо малую область (рис.

412) и рассмотрим пирамиду или конус с вершиной в центре шара О, имеющие эту область своим основанием; строго говоря, мы лишь условно говорим о конусе или пирамиде, так как основание не плоское, а сферическое.

Но при малых размерах основания по сравнению с радиусом шара оно будет весьма мало отличаться от плоского (так, например, при измерении не очень большого земельного участка пренебрегают тем, что он лежит не на плоскости, а на сфере).

Тогда, обозначая через площадь этого участка – основание «пирамиды», найдем ее объем как произведение одной трети высоты на площадь основания (высотой служит радиус шара):

Если теперь всю поверхность шара разложить на очень большое число N таких малых областей , тем самым объем шара на N объемов «пирамид», имеющих эти области своими основаниями, то весь объем представится суммой

где последняя сумма равна полной поверхности шара:

Итак, объем шара равен одной трети произведения его радиуса на площадь поверхности. Отсюда для площади поверхности имеем формулу

Последний результат формулируется так:

Площадь поверхности шара равна учетверенной площади его большого круга.

Приведенный вывод пригоден и для площади поверхности сектора шара (имеем в виду только основание, т. е. сферическую поверхность, или «шапочки»; см. рис. 409). И в этом случае объем сектора равен одной трети произведения радиуса шара на площадь его сферического основания:

откуда находим для площади шапочки формулу

Шаровым поясом (см. рис. 408) называют сферическую поверхность шарового слоя. Чтобы вычислить площадь поверхности шарового пояса, находим разность поверхностей двух сферических шапочек:

где – высота слоя. Итак, площадь поверхности шарового пояса для данного шара зависит только от высоты соответствующего слоя, но не от его положения на шаре.

Задача. Боковая поверхность конуса, описанного вокруг шара, имеет площадь, равную полуторной площади поверхности шара. Найти высоту конуса, если радиус шара равен .

Решение. Введем для удобства угол а между высотой и образующей конуса (рис. 413). Найдем для высоты, радиуса основания и образующей конуса выражения

Источник: https://slovarslov.ru/ploshchad-polusfery-kalkulyator-onlain-sfera-shar-segment-i-sektor-formuly.html

Шар.Сечение Шара.(билет по математике). Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Площадь шара находится по формуле. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Нарис. 11 показано построение проекцийне­которых точек.

ПроекцииС” и Dпостроенына горизонтальной проекции параллелирадиуса 0″1″,построеннойс

помощьюпро­екции 1“.Проекция С”” и D“”построенына профильной проекции окружности,проведенной на сфере через проекцииC“(D“)так,что плоскость окружности параллельнаплоскости проекций.

ПроекцияЕ”являетсяточкой касания эллипса (горизонтальнойпроекции окружности среза) и экваторасферы. Она построена в про­екционнойсвязи на горизонтальной проекцииэкватора по фрон­тальной проекцииЕ”.

Горизонтальнаяпроекция М”произвольнойточки на линии среза построена с помощьюпараллели радиуса О”2″, фронтальная проекция которой проходитчерез проекции М“и2.ПроекцияF“являетсяточкой касания эллипса (профильнойпро­екции окружности среза) и профильнойпроекции очерка сферы.

Еслиплоскость, пересекающая сферу, являетсяплоскостью общего положения, то задачурешают способом перемены плоскос­тейпроекций. Дополнительную плоскостьпроекций выбирают так, чтобы обеспечитьперпендикулярность ее и секущейплоскости. Этопозволяетупростить построение линии пересечения.

12. Построение сечений тора

Впримере на рис. 12 показано применениевспомогательных плоскостей γ 1 (γ 1 “)и γ 2 (γ 2 “), перпендикулярных оси тора, для построениялинии пересечения и натурального видафигуры сечения поверхности тораплоскостью α (α””). Тор на рис.12 имеетдва изображения – фронтальную проекциюи половину профильной проекции.

Полуокружностьрадиуса R2(профильнаяпроекция линии пересечения торавспомогательной

плоскостьюγ2)касаетсяпроекции плоскости α(следа α“”).Темсамым определяются профильная проекция3″”ипо ней фронтальная проекция 3″”однойиз точек проекции искомой линиипересечения.

Полуокружность радиусаR1 – профильная проекция линии пересечениятора вспомогательной плоскостью γ1.Онапересекает профильную проекцию плоскости α (след α“”)вдвух точках 5″” и 7″”-профильных проекциях точек линиипересечения.

Проводя аналогичныепост­роения, можно получить необходимоеколичество проекций точек для искомойлинии пересечения. Используем найденныеточки для построения натурального видафигуры сечения. Фигура сечения тораплоскостью, параллельной его оси,имеет оси и центр симметрии.

При еепостроении использованы расстояния l 1 иl 2на фронтальной проекции для нанесенияточек 5 0 ,7 0и 3 0 .

Точки6 0 ,8 0и 4 0построены как симметричные. Построеннаякривая пересечения поверхности тораплоскостью выражается ал­гебраическимуравнением 4-го порядка.

Кривыепересечения тора с плоскостью, параллельнойоси, приведены на рис.12 внизу. Они имеютобщее название – кривые Персея (Персей-геометр Древней Греции). Это кривыечетвертого порядка. Вид кривых зависитот величины расстояния от секущейплоскости до оси тора.
Наименование параметра Значение
Тема статьи:Сечение сферы
Рубрика (тематическая категория) Образование

Плоскостью частного положения

Сфера пересечена фронтально- прое-цирующей плоскостью (рис.9.19.)

Окружность, по которой плоскость a пересекает сферу, на плоскость Н проецируется в эллипс. На фронтальную плоскость проекций эта окружность проецируется в отрезок 1¢¢2¢¢, лежащей на следе a v . Строим точки 1¢ и 2¢, это горизонтальные проекции самой высокой и самой низкой точками сечения. Большая ось эллипса на горизонтальной плоскости проекций определяется точками 5 и 6, которые получаются при пересечении плоскости Т, проходящей через центр сферы, перпендикулярной плоскости a.

Для построения горизонтальных проекций точек воспользуемся параллелями сферы, проходящими через выбранные точки. Обязательно нужно выбрать точки 3 и 4, лежащие на экваторе, так как являются точками перехода с видимой на невидимую сторону поверхности (рис.9.19.).

РАЗВЕРТКИ

При изучении построения разверток поверхности рассматривают как гибкую нерастяжимую пленку. Некоторые поверхности при изгибании можно совместить с плоскостью без разрывов и склеивания. Такие поверхности называют развертывающимися, а полученную плоскую фигуру – разверткой. Поверхности, которые нельзя совместить с плоскостью, относятся к неразвертываемым.

Построение разверток имеет большое практическое применение, так как позволяет изготавливать разнообразные изделия из листового материала путем его изгибания.

Основные свойства разверток поверхностей

Каждой точке (фигуре) на поверхности соответствует точка (фигура) на развертке и наоборот.

На основании этого можно сформулировать следующие свойства:

1. Длины двух соответствующих линий поверхности и ее развертки равны между собой. Следствие: замкнутая линия на поверхности и соответствующая ей линия на развертке ограничивают одинаковую площадь.

2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке.

3. Прямой на поверхности соответствуют прямая на развертке.

4. Параллельным прямым на поверхности соответствуют также параллельные на развертке

Развертка поверхности многогранников

Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью.

Существуют три способа построения развертки многогранных поверхностей:

1) Способ треугольников (триангуляции);

2) Способ нормального сечения;

3) Способ раскатки.

Сечение сферы – понятие и виды. Классификация и особенности категории “Сечение сферы” 2017, 2018.

Введение

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называемой радиусом.

Отрезок, соединяющий две точки шаровой поверхности проходящей через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, также как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Сечение шара плоскостью

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство: Пусть – секущая плоскость и О – центр шара (рис. 1) Опустим перпендикуляр из центра шара на плоскость и обозначим через О” основание этого перпендикуляра.

Пусть X – произвольная точка шара, принадлежащая плоскости. По теореме Пифагора ОХ2=ОО”2+О”Х2. Так как ОХ не больше радиуса R шара, то О”Х?, т.е.

любая точка сечения шара плоскостью находится от точки О” на расстоянии, не большем, следовательно, она принадлежит кругу с центром О” и радиусом. Обратно: любая точка Х этого круга принадлежит шару.

А это значит, что сечение шара плоскостью есть круг с центром в точке О”. Теорема доказана.

Площадь, проходящая через центр шара, называется диаметрально плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы – большой окружностью.

Сечение поверхности шара

Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций.

В общем же случае мы будем получать эллипс.

В том случае, если секущая плоскость перпендикулярна плоскости проекций, на этой плоскости проекцией окружности является отрезок прямой, который равен диаметру этой окружности.

На рисунке 109 показано пересечение поверхности шара горизонтально-проектирующей плоскостью Р.

На горизонтальную плоскость сечение будет проецироваться в виде отрезка проекции р плоскости Р, который заключён между контуром шара и равен диаметру окружности сечения. На фронтальной плоскости мы получим эллипс.

О 1 является центром окружности, который получен в сечении шара. Он расположен на одной высоте с центром шара О. Горизонтальная проекция о 1 центра О 1 окружности располагается посредине отрезка ab.

Перпендикуляр, который опущен из точки о на прямую ab, попадает в точку о 1 , являющуюся горизонтальной проекцией центра окружности сечения. Фронтальная проекция о́ 1 центра окружности является центром интересующего нас эллипса.

Если рассматривать эллипс как проекцию некоторой окружности, то его большая ось всегда будет проекцией того диаметра окружности, который параллелен плоскости проекций, а малая ось эллипса будет представлять собой проекцию диаметра, перпендикулярного ему.

Вследствие этого большая ось эллипса проекции всегда равна диаметру проецируемой окружности. Здесь диаметр окружности CD перпендикулярен плоскости Н и проецируется без искажения на фронтальную плоскость.

Для нахождения концов большой оси эллипса необходимо отложить вниз и вверх от центра о 1 эллипса (по перпендикуляру к прямой о́о́ 1) отрезки о́ 1 с́ и о́ 1 , которые равны половине диаметра окружности сечения о́ 1 с́ = о́ 1 = 1/2(ab).

При этом диаметр АВ окружности параллелен горизонтальной плоскости, а его фронтальная проекция а́b́ представляет собой малую ось рассматриваемого эллипса.

Точки, отделяющие видимую часть эллипса от невидимой.Начнем с проведения фронтальной плоскости Q, которая делит шар пополам. Плоскость Q будет пересекать поверхность шара по окружности, проецирующейся на фронтальную плоскость в виде контура.

Тогда часть линии сечения, расположенную на передней части шара, будет видно, если смотреть на шар спереди, а остальная её часть не будет видна. Плоскость Q пересечет плоскость Р по фронтали Ф 1 .

Пересекаясь с контуром, ее фронтальная проекция Ф определит точки 1, которые отделяют видимую часть кривой от невидимой.

Промежуточные точки 2́ эллипса можно найти с помощью вспомогательной фронтальной плоскости R, пересекающей поверхность шара по окружности радиуса r 2 , а плоскость Р – по фронтали Ф 2 .

Шар – это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара. Граница шара называется шаровой поверхностью или сферой.

Точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, который соединяет центр шара с точкой шаровой поверхности, тоже называется радиусом. Проходящий через центр шара отрезок, который соединяет две точки шаровой поверхности, называется диаметром.

Концы любого диаметра называются диаметрально противоположными точками шара.

Шар является телом вращения, так же как конус и цилиндр. Шар получается при вращении полукруга вокруг его диаметра как оси.

Площадь поверхности шара можно найти по формулам:

где r – радиус шара, d – диаметр шара.

Объём шара находится по формуле:

V = 4 / 3 πr 3 ,

где r – радиус шара.

Теорема. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Исходя из данной теоремы, если шар с центром O и радиусом R пересечён плоскостью α, то в сечении получается круг радиуса r с центром K. Радиус сечения шара плоскостью можно найти по формуле

Из формулы видно, что плоскости, равноудалённые от центра, пересекают шар по равным кругам. Радиус сечения тем больше, чем ближе секущая плоскости к центру шара, то есть чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью, называется большим кругом, а сечение сферы – большим кругом, а сечение сферы – большой окружностью.

Теорема. Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, которая и проходит через точку А шаровой поверхности и перпендикулярна радиусу, проведённому в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Теорема. Касательная плоскость имеет с шаром только одну общую точку – точку касания.

Прямая, которая проходит через точку А шаровой поверхности перпендикулярно к радиусу, проведённому в эту точку, называется касательной.

Теорема. Через любую точку шаровой поверхности проходит бесконечно много касательных, причём все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Круг ABC – основание шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, – высота шарового сегмента. Точка M – вершина шарового сегмента.

Площадь поверхности шарового сегмента можно вычислить по формуле:

Объём шарового сегмента можно найти по формуле:

V = πh 2 (R – 1/3h),

где R – радиус большого круга, h – высота шарового сегмента.

Шаровой сектор получается из шарового сегмента и конуса, следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется.

Шаровой сектор – это часть шара, ограниченная кривой поверхностью сферического сегмента (на нашем рисунке – это AMCB) и конической поверхностью (на рисунке – это OABC), основанием которой служит основание сегмента (ABC), а вершиной – центр шара O.

Объем шарового сектора находится по формуле:

V = 2/3 πR 2 H.

Шаровый слой – это часть шара, заключённая между двумя параллельными плоскостями (на рисунке плоскостями ABC и DEF), пересекающими сферическую поверхность. Кривая поверхность шарового слоя называется шаровым поясом (зоной). Круги ABC и DEF – основания шарового пояса. Расстояние NK между основаниями шарового пояса – его высота.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Источник: https://amr001.ru/shar-sechenie-shara-bilet-po-matematike-sfera-shar-segment-i-sektor-formuly-i.html

Площадь сферы. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Площадь шара находится по формуле. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Шар и сфера — это прежде всего геометрические фигуры, и если шар — это геометрическое тело, то сфера — это поверхность шара. Этими фигурами интересовались еще многие тысячи лет назад до н.э.

Впоследствии когда было открыто, что Земля — это шар, а небо — небесная сфера, получило развитие новое увлекательное направление в геометрии — геометрия на сфере или сферическая геометрия. Для того, чтобы рассуждать о размере и объеме шара, нужно сначала дать ему определение.

Шар

Шаром радиуса R с центром в точке О в геометрии называют тело, которое создано всеми точками пространство, имеющими общее свойство.

Эти точки находятся на расстоянии, не превышающем радиуса шара, то есть заполняют все пространство меньше радиуса шара во все стороны от его центра.

Если мы рассмотрим только те точки, которые равноудалены от центра шара — мы будем рассматривать его поверхность или оболочку шара.

Как можно получить шар? Мы можем вырезать из бумаги круг и начать его вращать вокруг его же диаметра. То есть диаметр круга будет осью вращения. Образованная фигура — будет шар. Поэтому шар называют также телом вращения. Потому что он может быть образован путем вращения плоской фигуры — круга.

Возьмем какую-нибудь плоскость и разрежем ею наш шар. Подобно тому как мы режем ножом апельсин. Кусок, который мы отсечем от шара, называется шаровым сегментом.

В Древней Греции умели не только работать с шаром и сферой, как с геометрическими фигурами, например, использовать их при строительстве, а также умели расчитывать площадь поверхности шара и объем шара.

Сферой иначе называется поверхность шара. Сфера — это не тело — это поверхность тела вращения. Однако так как и Земля и многие тела имеют сферическую форму, например капля воды, то изучение геометрических соотношений внутри сферы получило большое распространение.

Например, если мы соединим две точки сферы между собой прямой линией, то эта прямая линия назовется хордой, а если эта хорда пройдет через центр сферы, который совпадает с центром шара, то хорда назовется диаметром сферы.

Если мы проведем прямую линию, которая коснется сферы всего в одной точке, то эта линия будет называться касательной. Кроме того, эта касательная к сфере в этой точке будет перпендикулярна к радиусу сферы, проведенному в точку касания.

Если мы продолжим хорду до прямой в одну и другую сторону от сферы, то эта хорда станет называться секущей. Или можно сказать иначе — секущая к сфере содержит в себе ее хорду.

Объем шара

Формула для вычисления объема шара имеет вид:

где R — радиус шара.

Если нужно найти объем шарового сегмента — воспользуйтесь формулой:

V сег =πh 2 (R-h/3), h — высота шарового сегмента.

Площадь поверхности шара или сферы

Чтобы вычислить площадь сферы или площадь поверхности шара (это одно и то же):

где R — радиус сферы.

Архимед очень любил шар и сферу, он даже попросил оставить на его гробницу рисунок, на котором в цилиндр вписан шар. Архимед считал, что объем шара и его поверхность равны двум третьим от объема и поверхности цилиндра, в который вписан шар»

Определение.

Сфера (поверхность шара) – это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар – это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) – это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) – это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара:

V =4πR 3 =1πD 3
36

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4πR 2 = πD 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат:

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат:

(x – x 0) 2 + (y – y 0) 2 + (z – z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются, а в плоскости пересечения образуется круг.

Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы – это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) – это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость – это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость – это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг. Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность, а на шаре местом сечения будет малый круг. Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 – m 2,

Где R – радиус сферы (шара), m – расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) – это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение.Касательная к сфере – это прямая, которая касается сферы только в одной точке.

Определение.Касательная плоскость к сфере – это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара – это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2πRh

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия, задачи о сфере). Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом на форуме. В задачах вместо символа “квадратный корень” применяется функция sqrt(), в которой sqrt – символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак“√”. В сферу вписан конус, образующая которого равна l, а угол при вершине осевого сечения равен 60 градусов. Найдите площадь сферы.

Решение.
Площадь сферы найдем по формуле:

Поскольку в сферу вписан конус, проведем сечение через вершину конуса, которое будет равнобедренным треугольником. Поскольку угол при вершине осевого сечения равен 60 градусам, то треугольник – равносторонний (сумма углов треугольника – 180 градусов, значит остальные углы (180-60) / 2 = 60 , то есть все углы равны).

Откуда радиус сферы равен радиусу окружности, описанного вокруг равностороннего треугольника. Сторона треугольника по условию равна l . То есть

Таким образом площадь сферы

S = 4π(√3/3 l) 2
S = 4/3πl 2

Ответ: площадь сферы равна 4/3πl 2 .

Задача

Емкость имеет форму полусферы (полушара). Длина окружности основания равна 46 см. На 1 квадратный метр расходуется 300 граммов краски. Сколько необходимо краски, чтобы покрасить емкость?

Решение. Площадь поверхности фигуры будет равна половине площади сферы и площади сечения сферы. Поскольку нам известна длина окружности основания, найдем ее радиус: L = 2πR Откуда R = L / 2π R = 46 / 2π R = 23 / π

Источник: https://autoeo.ru/electricity/ploshchad-sfery-sfera-shar-segment-i-sektor-formuly-i/

Помощь по Теле2, тарифы, вопросы

Площадь шара находится по формуле. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Сфера – это одно из первых тел, обладающих высокой симметрией, свойства которого изучают в школьном курсе геометрии. В данной статье рассматривается формула сферы, ее отличие от шара, а также приводится расчет площади поверхности нашей планеты.

Сфера: понятие в геометрии

Чтобы лучше понять формулу поверхности, которая будет дана ниже, необходимо познакомиться с понятием сферы. В геометрии она представляет собой трехмерное тело, которое заключает в себе некоторый объем пространства.

Математическое определение сферы следующее: это совокупность точек, которые лежат на определенном одинаковом расстоянии от одной фиксированной точки, называемой центром.

Отмеченное расстояние – это радиус сферы, который обозначается r или R и измеряется в метрах (километрах, сантиметрах и других единицах длины).

На рисунке ниже приведена описанная фигура. Линии показывают контуры ее поверхности. Черная точка – центр сферы.

Получить эту фигуру можно, если взять окружность и начать ее вращать вокруг любой из осей, проходящей через диаметр.

Сфера и шар: в чем разница и в чем сходство?

Часто школьники путают эти две фигуры, которые внешне похожи друг на друга, но обладают совершенно разными физическими свойствами.

Сфера и шар в первую очередь отличаются своей массой: сфера – это бесконечно тонкий слой, шар же – это объемное тело конечной плотности, которая одинакова во всех его точках, ограниченных сферической поверхностью. То есть шар обладает конечной массой и является вполне реальным объектом.

Сфера – это фигура идеальная, не имеющая массы, которая в действительности не существует, но она является удачной идеализацией в геометрии при изучении ее свойств.

Примерами реальных объектов, форма которых практически соответствует сфере, являются новогодняя игрушка в виде шарика для украшения елки или мыльный пузырь.

Что касается сходства между рассматриваемыми фигурами, то можно назвать следующие их признаки:

  • обе они обладают одинаковой симметрией;
  • для обеих формула площади поверхности является одинаковой, более того, они обладают равной площадью поверхности, если их радиусы равны;
  • обе фигуры при равных радиусах занимают одинаковый объем в пространстве, только шар его заполняет полностью, а сфера лишь ограничивает своей поверхностью.

Сфера и шар равного радиуса приведены на рисунке ниже.

Заметим, что шар, так же как и сфера, является телом вращения, поэтому его можно получить, если вращать вокруг диаметра круг (не окружность!).

Элементы сферы

Так называются геометрические величины, знание которых позволяет описать либо всю фигуру, либо отдельные ее части. Основными ее элементами являются следующие:

  • Радиус r, который уже был упомянут ранее. Он является расстоянием от центра фигуры до сферической поверхности. По сути, это единственная величина, которая описывает все свойства сферы.
  • Диаметр d, или D. Это отрезок, концы которого лежат на сферической поверхности, а середина проходит через центральную точку фигуры. Диаметр сферы можно провести бесконечным числом способов, но все полученные отрезки будут иметь одинаковую длину, которая равна удвоенному радиусу, то есть D = 2*R.
  • Площадь поверхности S – двумерная характеристика, формула для которой будет приведена ниже.
  • Связанные со сферой трехмерные углы измеряются в стерадианах. Один стерадиан – это угол, вершина которого лежит в центре сферы, и который опирается на часть сферической поверхности, имеющей площадь R 2 .

Геометрические свойства сферы

Из приведенного описания этой фигуры можно самостоятельно догадаться об этих свойствах. Они следующие:

  • Любая прямая, которая пересекает сферу и проходит через ее центр, является осью симметрии фигуры. Поворот сферы вокруг этой оси на любой угол переводит ее в саму себя.
  • Плоскость, которая пересекает рассматриваемую фигуру через ее центр, делит сферу на две равные части, то есть является плоскостью отражения.

Площадь поверхности фигуры

Эта величина обозначается латинской буквой S. Формула вычисления площади сферы имеет следующий вид:

S = 4*pi*R 2 , где pi ≈ 3,1416.

Формула демонстрирует, что площадь S может быть вычислена при условии знания радиуса фигуры. Если же известен ее диаметр D, тогда формулу сферы можно записать так:

Иррациональное число pi, для которого приведены четыре знака после запятой, в ряде математических расчетов можно использовать с точностью до сотых, то есть 3,14.

Любопытно также рассмотреть вопрос, скольким стерадианам соответствует вся поверхность рассматриваемой фигуры. Исходя из определения этой величины, получаем:

Ω = S/R 2 = 4*pi*R 2 /R 2 = 4*pi стерадиан.

Для вычисления любого объемного угла следует в выражение выше подставить соответствующее значение площади S.

Поверхность планеты Земля

Формулу сферы можно применить для определения на которой мы живем. Перед тем как приступать к вычислениям, следует сделать пару оговорок:

  • Во-первых, Земля не обладает идеальной сферической поверхностью. Ее экваториальный и полярный радиусы равны 6378 км и 6357 км соответственно. Отличие между этими цифрами не превышает 0,3%, поэтому для расчета можно взять средний радиус 6371 км.
  • Во-вторых, рельеф является трехмерным, то есть на ней имеются впадины и горы. Эти характерные особенности планеты приводят к увеличению ее площади поверхности, тем не менее, в расчете их учитывать не будем, поскольку даже самая большая гора, Эверест, составляет 0,1% от земного радиуса (8,848/6371).

Используя формулу сферы, получаем:

S = 4*pi*R 2 = 4*3,1416*6371 2 ≈ 510,066 млн. км 2 .

Россия, по официальным данным, занимает площадь 17,125 млн км 2 , что составляет 3,36% от поверхности планеты. Если же учесть, что к суше относятся лишь 150,387 млн км 2 , тогда площадь нашей страны составит 11,4% от всей территории, не покрытой водой.


Шар – это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара. Граница шара называется шаровой поверхностью или сферой.

Точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, который соединяет центр шара с точкой шаровой поверхности, тоже называется радиусом. Проходящий через центр шара отрезок, который соединяет две точки шаровой поверхности, называется диаметром.

Концы любого диаметра называются диаметрально противоположными точками шара.

Шар является телом вращения, так же как конус и цилиндр. Шар получается при вращении полукруга вокруг его диаметра как оси.

Площадь поверхности шара можно найти по формулам:

где r – радиус шара, d – диаметр шара.

Объём шара находится по формуле:

V = 4 / 3 πr 3 ,

где r – радиус шара.

Теорема. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Исходя из данной теоремы, если шар с центром O и радиусом R пересечён плоскостью α, то в сечении получается круг радиуса r с центром K. Радиус сечения шара плоскостью можно найти по формуле

Из формулы видно, что плоскости, равноудалённые от центра, пересекают шар по равным кругам. Радиус сечения тем больше, чем ближе секущая плоскости к центру шара, то есть чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью, называется большим кругом, а сечение сферы – большим кругом, а сечение сферы – большой окружностью.

Теорема. Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, которая и проходит через точку А шаровой поверхности и перпендикулярна радиусу, проведённому в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Теорема. Касательная плоскость имеет с шаром только одну общую точку – точку касания.

Прямая, которая проходит через точку А шаровой поверхности перпендикулярно к радиусу, проведённому в эту точку, называется касательной.

Теорема. Через любую точку шаровой поверхности проходит бесконечно много касательных, причём все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Круг ABC – основание шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, – высота шарового сегмента. Точка M – вершина шарового сегмента.

Площадь поверхности шарового сегмента можно вычислить по формуле:

Объём шарового сегмента можно найти по формуле:

V = πh 2 (R – 1/3h),

где R – радиус большого круга, h – высота шарового сегмента.

Шаровой сектор получается из шарового сегмента и конуса, следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется.

Шаровой сектор – это часть шара, ограниченная кривой поверхностью сферического сегмента (на нашем рисунке – это AMCB) и конической поверхностью (на рисунке – это OABC), основанием которой служит основание сегмента (ABC), а вершиной – центр шара O.

Объем шарового сектора находится по формуле:

V = 2/3 πR 2 H.

Шаровый слой – это часть шара, заключённая между двумя параллельными плоскостями (на рисунке плоскостями ABC и DEF), пересекающими сферическую поверхность. Кривая поверхность шарового слоя называется шаровым поясом (зоной). Круги ABC и DEF – основания шарового пояса. Расстояние NK между основаниями шарового пояса – его высота.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Шар (сфера )

Сферическая поверхность. Шар (сфера). Сечения шара:круги.

Теорема Архимеда. Части шара:шаровой (сферический)сегмент,

шаровой слой, шаровой пояс, шаровой сектор.

Сферическая поверхность–это геометрическое место точек(т.е. множе ство всех точек ) в пространстве, равноудалённых от одной точкиO, которая называется центром сферическойповерхности(рис.90 ).Радиус AOи диаметр ABопределяются так же, как и в окружности.

Шар (сфера) – этотело, ограниченноесферическойповерхностью. Можнополучить шар, вращая полукруг (или круг)вокруг диаметра. Все плоские сечения шара – круги (рис.90). Наибольший круг лежит в сечении, проходящем черезцентр шара, и называется большим кругом. Его радиус равен радиусу шара.

Любые два больших круга пересекаются по диаметру шара (AB, рис.91).Этот диаметр является и диаметром пересекающихсябольших кругов. Через две точки сферической поверхности, расположенные на концаходного диаметра(A и B,рис.91), можно провестибесчисленное множество больших кругов.

Например, через полюса Земли можнопровести бесконечное число меридианов.

Объём шара в полтора раза меньше объёма описанного вокругнего цилиндра(рис.92), аповерхность шара в полтора раза меньшеполной поверхности того же цилиндра (теорема Архимеда):

ЗдесьS шара иVшара -соответственно поверхность и объём шара;

S цил и V цил – полная поверхность и объём описанного цилиндра.

Части шара. Часть шара (сферы),отсекаемая от него какой-либо плоскостью (ABC,рис.93),называется шаровым(сферическим )сегментом .

КругABC называется основанием шарового сегмента.ОтрезокMN перпендикуляра, проведенного из центраN кругаABC до пересечения со сферическойповерхностью, называется высотой шарового сегмента.

ТочкаMназывается вершиной шарового сегмента.

Часть сферы, заключённая между двумя параллельными плоскостямиABC иDEF,пересекающимисферическуюповерхность(рис.93 ), называется шаровым слоем;кривая поверхностьшарового слоя называется шаровым поясом(зоной ).КругиABC иDEF – основания шарового пояса.

РасстояниеNK междуоснованиями шарового пояса – его высота. Часть шара, ограниченная кривойповерхностью сферического сегмента (AMCB,рис.

93) и конической поверхностьюOABC,основанием которой служит основание сегмента (ABC), а вершиной –центр шараO, называется шаровым сектором.

– (греч. sphaira шар). 1) твердое тело, в котором все точки поверхности одинаково отдалены от внутренней точки, называемой центром шар; изображение земли в виде глобуса. 2) часть пространства, в котором планета совершает свой путь. 3) в фигуральном … Словарь иностранных слов русского языка

Жен., греч. шар, шарообразное тело или пустота, или изображенье его на бумаге; в приложении к небесным телам: шар обращаемый на оси своей, представляющий землю нашу, или небесную твердь, с означеньем всех воображаемых кругов. Армилярная сфера,… … Толковый словарь Даля

сфера – ы, ж. sphère f.

Источник: https://diwalini.ru/sfera-i-shar-teoriya-sfera-shar-segment-i-sektor-formuly-i-svoistva.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.